Geometric algorithms for computing cutter engagement functions in 2.5D milling operations
نویسندگان
چکیده
Geometric algorithms for computing cutter engagement functions in 2.5D milling operations. ABSTRACT Cutter engagement is a measure that describes what portion of the cutter is involved in machining at a given instant of time. During profile milling of complex geometries, cutter engagement varies significantly along the cutter path. Cutter engagement information helps in determining the efficiency of the cutter path and also helps in improving it by adjusting the feed rate. This paper describes geometric algorithms for computing piece-wise continuous closed-form cutter engagement functions for 2.5D milling operations. The results produced by our algorithm are compared with the results obtained by discrete simulations of the cutting process and appear to match very well.
منابع مشابه
Computing Cutter Engagement Values in Milling Tessellated Free-Form Surfaces
High speed milling (HSM) has great potential use in die/mold cutting, but traditional machining plans do exploit HSM capabilities effectively. An important consideration for in HSM is to limit cutting force variations, and one way to do so is to reduce Cutter-Workpiece engagement (CWE) variations. CWE is measured as the area of the tool instantaneously engaged with the part. Estimating CWE as a...
متن کاملA Geometric Algorithm for Finding the Largest Milling Cutter
In this paper, we describe a new geometric algorithm to determine the largest feasible cutter size for 2-D milling operations to be performed using a single cutter. In particular: 1. We give a general definition of the problem as the task of covering a target region without interfering with an obstruction region. This definition encompasses the task of milling a general 2-D profile that include...
متن کاملAlgorithms for selecting cutters in multi-part milling problems
This paper describes geometric algorithms for automatically selecting an optimal sequence of cutters for machining a set of 21⁄2D parts. In milling operations, cutter size affects the machining time significantly. Meanwhile, if the batch size is small, it is also important to shorten the time spent on loading tools into the tool magazine and establishing z-length compensation values. Therefore,...
متن کاملA Geometric Algorithm for Finding the Maximal Cutter for 2-d Milling Operations
In this paper, we present a geometric algorithm of finding the maximal cutter for 2-D milling operations. Our algorithm works not only for the common closed pocket problem, but also for the general 2-D milling problems with open edges. We define the general 2-D milling process in terms of a “target region” to be machined and an “obstruction region” that should not intersect with the cutter duri...
متن کاملCutter Path Generation For 2.5D Milling By Combining Multiple Different Cutter Path Patterns
Different cutter path patterns have been shown to be efficient for different types of pocket geometries. However, for certain types of complex pockets, no single type of pattern produces efficient cutter paths throughout the pocket. In this paper, different cutter path patterns are systematically analysed and several existing heuristics for selecting cutter path patterns are discussed. Based on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer-Aided Design
دوره 37 شماره
صفحات -
تاریخ انتشار 2005